24 research outputs found

    The effects of supplementary food on the breeding performance of Eurasian reed warblers Acrocephalus scirpaceus; implications for climate change impacts

    Get PDF
    Understanding the mechanisms by which climate variation can drive population changes requires information linking climate, local conditions, trophic resources, behaviour and demography. Climate change alters the seasonal pattern of emergence and abundance of invertebrate populations, which may have important consequences for the breeding performance and population change of insectivorous birds. In this study, we examine the role of food availability in driving behavioural changes in an insectivorous migratory songbird; the Eurasian reed warbler Acrocephalus scirpaceus. We use a feeding experiment to examine the effect of increased food supply on different components of breeding behaviour and first-brood productivity, over three breeding seasons (2012–2014). Reed warblers respond to food-supplementation by advancing their laying date by up to 5.6 days. Incubation periods are shorter in supplemented groups during the warmest mean spring temperatures. Nestling growth rates are increased in nests provisioned by supplemented parents. In addition, nest predation is reduced, possibly because supplemented adults spend more time at the nest and faster nestling growth reduces the period of vulnerability of eggs and nestlings to predators (and brood parasites). The net effect of these changes is to advance the fledging completion date and to increase the overall productivity of the first brood for supplemented birds. European populations of reed warblers are currently increasing; our results suggest that advancing spring phenology, leading to increased food availability early in the breeding season, could account for this change by facilitating higher productivity. Furthermore, the earlier brood completion potentially allows multiple breeding attempts. This study identifies the likely trophic and behavioural mechanisms by which climate-driven changes in invertebrate phenology and abundance may lead to changes in breeding phenology, nest survival and net reproductive performance of insectivorous birds

    Contrasting sensitivity of nestling and fledgling Barn Swallow Hirundo rustica body mass to local weather conditions

    Get PDF
    Local weather can influence the growth and development of young birds either indirectly, by modifying prey availability, or directly, by affecting energetic trade-offs. Such effects can have lasting implications for life history traits, but the nature of these effets may vary with the developmental stage of the birds, and over timescales from days to weeks. We examined the interactive effects of temperature, rainfall and wind speed on the mass of nestling and fledgling Barn Swallows Hirundo rustica both on the day of capture and averaging weather across the time since hatching. At the daily timescale, nestling mass was negatively correlated with temperature, but the strength of this association depended on the level of rainfall and wind speed; nestlings were typically heavier on dry or windy days, and the negative effect of temperature was strongest under calm or wet conditions. At the early lifetime timescale (i.e. from hatching to pre-fledging), nestling mass was negatively correlated with temperature at low wind speed. Fledgling body mass was less sensitive to weather; the only weather effect evident was a negative correlation with temperature at the daily scale under high rainfall that became slightly positive under low rainfall. These changes are consistent with weather effects on theavailability and distribution of insects within the landscape (e.g. causing high concentrations of flying insects) and with the effects of weather variation on nest microclimate. These results together demonstrate the impacts of weather on chick growth, over immediate (daily) and longer term (nestling/fledgling lifetime) timescales. This shows that sensitivity to local weather conditions varies across the early lifetime of young birds (nestling–fledgling stages) and illustrates the mechanisms by which larger scale (climate) variations influence the body condition of individuals

    Data from: The effects of supplementary food on the breeding performance of Eurasian reed warblers Acrocephalus scirpaceus; implications for climate change impacts

    No full text
    Understanding the mechanisms by which climate variation can drive population changes requires information linking climate, local conditions, trophic resources, behaviour and demography. Climate change alters the seasonal pattern of emergence and abundance of invertebrate populations, which may have important consequences for the breeding performance and population change of insectivorous birds. In this study, we examine the role of food availability in driving behavioural changes in an insectivorous migratory songbird; the Eurasian reed warbler Acrocephalus scirpaceus. We use a feeding experiment to examine the effect of increased food supply on different components of breeding behaviour and first-brood productivity, over three breeding seasons (2012–2014). Reed warblers respond to food-supplementation by advancing their laying date by up to 5.6 days. Incubation periods are shorter in supplemented groups during the warmest mean spring temperatures. Nestling growth rates are increased in nests provisioned by supplemented parents. In addition, nest predation is reduced, possibly because supplemented adults spend more time at the nest and faster nestling growth reduces the period of vulnerability of eggs and nestlings to predators (and brood parasites). The net effect of these changes is to advance the fledging completion date and to increase the overall productivity of the first brood for supplemented birds. European populations of reed warblers are currently increasing; our results suggest that advancing spring phenology, leading to increased food availability early in the breeding season, could account for this change by facilitating higher productivity. Furthermore, the earlier brood completion potentially allows multiple breeding attempts. This study identifies the likely trophic and behavioural mechanisms by which climate-driven changes in invertebrate phenology and abundance may lead to changes in breeding phenology, nest survival and net reproductive performance of insectivorous birds

    Habitat Use and Body Mass Regulation among Warblers in the Sahel Region during the Non-Breeding Season

    Get PDF
    <div><p>Migratory birds face significant challenges across their annual cycle, including occupying an appropriate non-breeding home range with sufficient foraging resources. This can affect demographic processes such as over-winter survival, migration mortality and subsequent breeding success. In the Sahel region of Africa, where millions of migratory songbirds attempt to survive the winter, some species of insectivorous warblers occupy both wetland and dry-scrubland habitats, whereas other species are wetland or dry-scrubland specialists. In this study we examine evidence for strategic regulation of body reserves and competition-driven habitat selection, by comparing invertebrate prey activity-density, warbler body size and extent of fat and pectoral muscle deposits, in each habitat type during the non-breeding season. Invertebrate activity-density was substantially higher in wetland habitats than in dry-scrubland. Eurasian reed warblers <i>Acrocephalus scirpaceus</i> occupying wetland habitats maintained lower body reserves than conspecifics occupying dry-scrub habitats, consistent with buffering of reserves against starvation in food-poor habitat. A similar, but smaller, difference in body reserves between wet and dry habitat was found among subalpine warblers <i>Sylvia cantillans</i> but not in chiffchaffs <i>Phylloscopus collybita</i> inhabiting dry-scrub and scrub fringing wetlands. Body reserves were relatively low among habitat specialist species; resident African reed warbler <i>A. baeticatus</i> and migratory sedge warbler <i>A. schoenobaenus</i> exclusively occupying wetland habitats, and Western olivaceous warblers <i>Iduna opaca</i> exclusively occupying dry habitats. These results suggest that specialists in preferred habitats and generalists occupying prey-rich habitats can reduce body reserves, whereas generalists occupying prey-poor habitats carry an increased level of body reserves as a strategic buffer against starvation.</p></div

    Starting models of GLM and GLMMs relating breeding performance parameters of reed warblers monitored in Cardiff Bay Wetland Reserve and Cosmeston Lakes Country Park in South Wales, UK, between 2012 and 2014.

    No full text
    <p>Starting models of GLM and GLMMs relating breeding performance parameters of reed warblers monitored in Cardiff Bay Wetland Reserve and Cosmeston Lakes Country Park in South Wales, UK, between 2012 and 2014.</p

    GLM predicted effects of supplementary feeding treatment and environmental variables on laying date in reed warblers.

    No full text
    <p>GLM predicted effects of supplementary feeding treatment and environmental variables on laying date in reed warblers.</p

    Generalised Additive Models of body mass (dependent variable) for each generalist species. Parameter estimates for levels of the factors “Habitat” and “Year”, are relative to the reference levels of “Wetland” and “2012” respectively.

    No full text
    <p>Effects shown in bold are significant (<i>P<0.05).</i></p><p>Generalised Additive Models of body mass (dependent variable) for each generalist species. Parameter estimates for levels of the factors “Habitat” and “Year”, are relative to the reference levels of “Wetland” and “2012” respectively.</p

    Pairwise comparison of proportional odds of species in a particular habitat having a muscle score of 1 unit higher than another species in a particular habitat, or the same species in a different habitat.

    No full text
    <p>Displayed odds values relate to species in the vertical column in reference to those in the horizontal row above the matrix. Positive odds values indicate a higher likelihood, and negative odds indicate a lower likelihood. The sign would be reversed to obtain the odds value for the species groups in the horizontal row in reference to those in the vertical column. * = P<0.05, **  = P<0.005, *** = P<0.0001.</p><p>Pairwise comparison of proportional odds of species in a particular habitat having a muscle score of 1 unit higher than another species in a particular habitat, or the same species in a different habitat.</p
    corecore